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Abstract. We introduce a Feynman diagram calculus for quantum stochastic fields and show
that from the weak coupling limit of a Bose quantum field reservoir in a Gaussian state
one obtains a quantum stochastic field process which has extended Wigner statistics. That
is, we calculate explicitly the moments using the diagram rules and show that only moments
corresponding to non-crossing diagrams are non-trivial. We further give the physical mechanism
underlying this fact; namely the combination of momentum conservation (arising from the correct
treatment of the full responsive interaction) and the mass-shell energy conservation for the virtual
(stochastic) reservoir quanta. In our analysis we introduce a volume cut-off initially for the
system particle to discretize its energy spectrum and then take the weak coupling limit. The
individual noise fields associated with energy state transitions were Gaussian however, when the
volume cut-off is then removed and we recover the noise correlations. Thus for this problem
the removal of the cut-off and the weak coupling limit are in fact interchangeable.

1. Introduction

The weak coupling limit [4] is a well known device for obtaining a quantum stochastic
description of a system coupled to a heat bath [5]. The limit description is either in terms
of a master equation [6, 7] or equivalently in terms of quantum stochastic processes [3, 8, 9].
The weak coupling limit gives thegolden ruleof stochastic dynamics in which the Wigner–
Weisskopf approximation becomes valid.

In the case whereS is an electron andR is a phonon gas in a thermal state, for example,
the interaction is responsive; that is, the electron couples differently to the different modes
of theR. In particular, when the electron emits or absorbs a phonon it must recoil because
of momentum conservation. In the unresponsive approximation this recoil is ignored and the
information of momentum carried off by the phonon is lost. Whereas this is justifiable in the
case of bound electron states, it can hardly be applied to conduction states. In the quantum
electrodynamics (QED) case this corresponds, of course, to the dipole approximation. The
treatments mentioned above assume an unresponsive interaction before passing to the weak
coupling limit. In [3], however, a quantum stochastic evolution is obtained for an electron
coupled to a thermal QED field without recourse to the dipole approximation. Here the
system unperturbed Hamiltonian was discrete. The problem of treating a system with a
continuous spectrum was studied in [1]. The limit noise had two novel features; it had
to be considered as a function of the system particle’s momentum and had non-Gaussian
statistics. Specifically, only non-crossing moments of the noise were non-zero.
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The first quantum stochastic limit exhibiting this feature was the random matrix theory
of Wigner [10] which introduced a non-commutative central limit theorem for which the
limit law was not the standard Gaussian but the semi-circle law. We shall use the term
extended Wigner lawfor the distribution of any process having only non-crossing moments
different from zero. The limit noise of Accardi and Lu [1] is a modified version of those
studied by Voiculescu [11] and K̈ummerer and Speicher [12].

We give a physical explanation of why the weak coupling limit for continuous spectrum
systems lead to such an extended Wigner law for the limit noise. We consider the full
responsive interaction of a quantum fieldR with the system; that is we do not make the
dipole approximation. Instead we introduce a volume cut-off for the system (though not
the reservoir) and use the results of [3] to describe the noise. Explicit diagram rules of
Feynman character are given to calculate the noise moments; these we call the (finite
volume) stochastic Feynman diagrams. We then remove the volume cut-off. It is then
shown that the crossing diagrams vanish. Essentially the volume of momentum phase
space for theR quanta momenta vanishes. The moments corresponding to the non-crossing
diagrams are calculated and are compared with those of Accardi and Lu [1].

The analysis of [3] and [2] both lead to limit stochastic descriptions for the case of
fully responsive interactions; the former paper considering a system with discrete energy
spectrum while the latter continuous. The noise statistics for the former was still Gaussian.
This paper therefore answers how these two approaches are actually in accord.

2. System and reservoir

We consider a quantum mechanical systemS coupled to a bosonic quantum field reservoir
R. The creation and annihilation operators for a reservoir quantum of wavevectork are
denotedb†(k) and b(k), respectively, and we have the CCR [b(k), b†(k′)] = δ(k − k′).
Here and in the following we shall suppress all internal degrees of the reservoir quanta
such as spin or polarization. The total Hamiltonian isHλ = HS + HR + λHI , HS and
HR being the unperturbed system and reservoir Hamiltonians, respectively. In particular,
HR = ∫

d3k h̄ω(k)b†(k)b(k).
The interactionHI is taken to be linear in the reservoir quanta, that isHI = ih̄{A† −A}

where

A† =
∫

d3k θ(k)⊗ b†(k). (2.1)

Hereθ(k) is a bounded operator on the system state space giving the response of the system
to the creation of a reservoir quantum of momentum ¯hk. The responseless approximation
is to takeθ(k) ≈ g(k)2 where2 is a fixed operator on the system state space andg(k) is
a real-valued function. In this case,A† = 2⊗ B†(g) whereB†(g) := ∫

d3k g(k)b†(k).
Suppose thatHS has a discrete spectrum and assume the existence of a complete

orthonormal basisB of energy-eigenstates such thatHS|φ〉 = h̄ε(φ) |φ〉 for eachφ ∈ B.
The response may then be expanded in the form

θ(k) =
∑
φ,φ′∈B

gφφ′(k)|φ〉〈φ′| (2.2)

where we have the test functiongφφ′(k) = 〈φ|θ(k)|φ′〉. The operatorA† may therefore be
expanded as

A† =
∑
φ,φ′∈B

|φ〉〈φ′| ⊗ B†(gφφ′). (2.3)
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Let v0
t (.) denote the unperturbed evolution superoperator then

v0
t (A

†) =
∑
φ,φ′∈B

|φ〉〈φ′| ⊗ B†(S
ωφφ′
t gφφ′) (2.4)

where (Sωt g)(k) := ei(ω(k)−ω)tg(k) and we have introduced the Bohr frequencyωφφ′ =
ε(φ′)− ε(φ) between energy states.

3. The weak coupling limit for a responsive interaction

The unitary operator

U
(λ)
t = T exp

{
λ

ih̄

∫ t

0
ds v0

s (HI)

}
transforms to the interaction picture. In the weak coupling limit one studies the limit
dynamics of the time-rescaled processU(λ)

t/λ2 asλ → 0. In [3] this limit was studied for the
set-up in the previous section and a unitary evolution was found with a Lindblad generator
(for X a system observable)L(X) = −XY − Y †X +2(X) where the operatorY gives the
complex damping calculated by second-order perturbation theory. Explicitly we have, for
φ ∈ B and the standard response term encountered in practiceθ(k) = f (k)e−ik·r, that

〈φ, Yφ〉 = h̄

i

∫
d3k 〈φ| N(k)+ 1

D+(φ,k)− i0+ + N(k)

D−(φ,k)− i0+ |φ〉|f (k)|2 (3.1)

whereN(k) is the number density of particles with wavevectork and

D±(φ,k) = HS ∓ h̄p · k

m
+ h̄2k2

2m
± h̄ω(k)− Eφ. (3.2)

The first term in (3.1) gives the stimulated emission contribution while the second gives
that of stimulated absorption.

As a physical model we consider an electron in a metal close to the lower edge
of a conduction band [5]. Letφ = |l〉 be the eigenstate of momentum ¯hl such that
HS|l〉 = h̄ε(l)|l〉 where ε(l) = (h̄l2/2m) is a good approximation for small values of
l. The interacting quantum field can be taken to be a phonon gas with acoustic dispersion
law ω(k) = c|k| where c is the speed of sound. The complex damping for state|l〉 is
calculated from (3.1) with the functions (3.2) replaced by

D±(l,k) = ∓h̄
2l · k

m
+ h̄2k2

2m
± h̄ck. (3.3)

The actual damping, i.e. the real part of〈l|Y |l〉, appears in the form of integrations over
the respective spaces (mass shells)6±(l) = {k 6= 0 : D±(l,k) = 0}.

In general,6±(l) is a two-dimensional hypersurface inR3 consisting of all vectorsk
such that|k| = ∓(l cosθ − (mc/h̄)) whereθ is the angle betweenl andk. Note that6+(l)
is empty for|l| 6 (mc/h̄) which means that the corresponding component of the damping
is non-zero only for electron velocities in excess of the speed of sound.

The final result for the damping (also equivalent to the transition rate for statel from
the golden rule) is that calculated by other authors, for example, Haken, cf [13, sections 29
and 30] and references within, where Frölich’s Hamiltonian for electrons in interaction with
phonons is considered. In the subsequent sections of this paper the moments of the limit
noise are related to the damping coefficients and so we must have non-zero damping for
non-trivial results. For an account of the renormalization see [13] or for a more rigorous
treatment [14].
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We remark that this theory is not applicable for QED as there is no damping: in general,
we encounter the functions

D±(l,k) = h̄ε(l ∓ k)− h̄ε(l)± h̄ω(k). (3.4)

However, forh̄ε(l) =
√
m2c4 + c2h̄2l2 andω(k) = c|k|, the spaces6±(l) always consist

of just the vectork = 0, for all l, which just signifies that the fundamental vertex of QED
does not conserve four-momentum.

As is well known, there is a natural way of describing the creation and annihilation
operators in a thermal state in terms of a pair of similar operators both in a vacuum state:
B(g) ≡ Be(Q+g)⊗ 1 + 1 ⊗ B

†
a(Q−g), where((Q±1)/2)1/2. The indices e and a stand for

stimulated emission and absorption, respectively. In the remainder of this paper we shall
understandB](g) to mean either the creation and annihilation fields in the vacuum state or
either one of the stimulated emission or absorption states in their respective vacuum state
for a thermal state.

4. The weak coupling limit

We now outline briefly the results concerning the weak coupling limit that we shall need.
For further details concerning the exact construction of the noise spaces and the notion of
convergence as a non-commutative process used see [3, 9].

Theorem 1. As a non-commutative central limit we have

lim
λ→0

λ

∫ t/λ2

0
duB](Sωu g) = B]ω(g, t) (4.1)

the limit is a quantum Wiener process [8] with commutation relations

[Bω(g, t), B
†
ω′(g

′, t ′)] = δω,ω′ t ∧ t ′(g|g′)ω (4.2)

where we have

(g|g′)ω =
∫

d3k 2π g(k) δ(ω(k)− ω) g′(k). (4.3)

Corollary. We have the following decomposition in terms of energy-state transitions onS

A
†
T := lim

λ→0
λ

∫ T/λ2

0
du v0

u(A
†) =

∑
φ,φ′∈B

|φ〉〈φ′| ⊗ B†
ωφφ′ (gφφ′ , T ). (4.4)

The fieldsA]T are referred to as theinteraction noises. The operatorsA] live on the
combined system–reservoir state space and therefore do not satisfy any CCR as such.

Theorem 2.

lim
λ→0

U
(λ)

t/λ2 = Ut (4.5)

whereUt is the unitary quantum stochastic process satisfying the differential equation

dUt = {dA†
t − dAt − Y ⊗ dt}Ut (4.6)

with U0 = 1.

The integrators in (4.6) are given by

dA†(t) =
∑
φ,φ′∈B

|φ〉〈φ′| ⊗ dB†
ωφφ′ (gφφ′ , t). (4.7)
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Theorem 3. ForX a bounded operator on the system state space, we have

lim
λ→0

U
(λ)†
t/λ2 (X ⊗ 1)U(λ)

t/λ2 = U
†
t (X ⊗ 1)Ut . (4.8)

5. Stochastic diagram rules

We wish to give diagram rules for computingN -point correlation functions of the type

〈A]1
T1
. . . A

]N
TN

〉. (5.1)

By 〈.〉 we mean the expectation over the noise Fock vacuum defines as an operator on
the system state space. We use the termstochastic Feynman diagramsto indicate that we
have already taken the quantum stochastic limit of the field we wish to describe by diagram
calculus. Clearly we must haveN = 2n andn A†’s andn A’s if (5.1) is to be non-zero.
To see what can happen, we examine the two-point correlation

〈AT2A
†
T1

〉 =
∑
φ,φ′∈B

∑
ψ,ψ ′∈B

|ψ〉〈ψ ′|φ′〉〈φ| 〈Bωψ ′ψ (gψ ′ψ, T2), B
†
ωφ′φ (gφ

′φ, T1)〉

=
ε(φ)=ε(ψ)∑
φ,ψ∈B

∑
φ′∈B

|ψ〉〈φ| (T1 ∧ T2)

∫
d3k gφ′ψ(k)gφ′φ(k) 2πδ(ω(k)− ωφ′φ).

(5.2)

We shall now give the rules for calculating the diagrams corresponding to given 2n-point
functions. We shall of course consider only non-trivial diagrams. With the operator
|ψ〉〈φ| ⊗ B†

ω(g, t) we associate the vertex (figure 1).

u
�

�
�

�
��

Q
Q

Q
Q

QQ

|φ〉

〈ψ |

k

Figure 1. The vertexA†.

The system particle is denoted with a thin line while theR-quanta is denoted with a
thick line. We shall adopt the convention throughout that all diagrams read from right to left
and we note that every vertex is labelled by a time variable. The time variables appearing
in a diagram are not necessarily in increasing order as we read from right to left.

For an arbitrary sub-diagram we draw generically a box (figure 2) with a broken
boundary, while for a sub-diagram having no external lines of theR-quanta (i.e. there
are no reservoir quanta which are emitted without being subsequently re-absorbed in the
sub-diagram andvice versa) then we reserve the diagram (figure 3) of a box with a full
boundary.

Figure 2. Arbitrary diagram. Figure 3. Diagram with no externalR-quanta.
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Rule 1. With (figure 1) multiply bygφψ(k): with its mirror image multiply bygφψ(k).

Rule 2. For the situation whereφ andψ are input and output states for a diagram with
no other external system or reservoir quanta lines, we must haveε(φ) = ε(ψ).

Rule 3. For a reservoir quantum which is emitted and re-absorbed along the same line
(figure 4), multiply by(T ∧ S) δ(ωφφ′ − ωψψ ′) 2πδ(ω(k)− ωφφ′).

u u
' $

Figure 4. Contraction diagram.

ψ ψ ′ φ′ φ

Rule 4. Sum over all intermediate states (running throughB) and integrate over all
reservoir quanta momenta. Sum over the pair of external system states subject to rule 2.

For example, we may display the following 2n-point functions as diagrams and use the
above rules to calculate them.〈AT2A

†
T1

〉 is represented by (figure 5) while〈AT4A
†
T3
AT2A

†
T1

〉
is by (figure 6) and〈AT4AT3A

†
T2
A

†
T1

〉 by (figure 7).

u u u u u u� �
Figure 5. 〈AT2A

†
T1

〉.

� �� �
Figure 6. 〈AT4A

†
T3
AT2A

†
T1

〉.
T2 T1 T4 T3 T2 T1

u uu u u uu u� �#  #  � �
+

Figure 7. 〈AT4AT3A
†
T2
A

†
T1

〉.

T4 T3 T2 T1 T4 T3 T2 T1

6. The free particle limit

We consider a free particle in a boxV = L × L × L with HamiltonianHS = (1/2m)p2.
Let V ∗ = ((2π/L)Z)3, then assuming periodic boundary conditions we have a basis
B = {|l〉 : l ∈ V ∗} where〈r|l〉 := (1/V −1/2) eil·r. Here we haveHS|l〉 = h̄ε(l)|l〉 where
ε(l) = (h̄/2m)l2. Now, as is standard in most models, we take the response to be

θ(k) := e−ik·rf (k). (6.1)

The test functions for the interaction are then given by

gl′l(k) = 〈l′|θ(k)|l〉 =
∫
V

d3r
ei(l−k−l′)·r

V
f (k) =:

(2π)3

V
δV (l − k − l′)f (k). (6.2)
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Here δV is a regularization of the delta function. In the continuum limit(V → ∞) we
clearly obtain the constraintl′ = l − k which is of course nothing more than momentum
conservation: the diagram rules for the infinite volume limit are analogous to the earlier
ones. In the continuum of states limit, the sum over intermediate momentum states is
replaced by an integration in rule 4. Similarly, the fundamental vertex has strict momentum
conservation built in and we understand rule 1 to mean that we multiply byf (k). Thus we
have figure 1 with|φ〉 = |l〉 and〈ψ | = 〈l−k|. We shall now calculate the 2-point function
in the continuum limit: note first of all that we have, for suitable functionsh = h(l),

lim
V→∞

(2π)3

V

∑
l∈V ∗

h(l) =
∫

R3
d3l h(l). (6.3)

From (5.2) we have

〈AT2A
†
T1

〉 = (T1 ∧ T2)

ε(l)=ε(l′)∑
l,l′∈V ∗

∑
l1∈V ∗

∫
d3k |l〉〈l′| (2π)

3

V

×δV (l − k − l1)
(2π)3

V
δV (l

′ − k − l1)|f (k)|2 2πδ(ω(k)− ε(l1)+ ε(l))

(6.4a)

→ (T1 ∧ T2)

∫
dr

∫
d�

∫
d�′

∫
dr1

∫
d�1

∫
d3k |l〉〈l′|

×|f (k)|2 2πδ(ω(k)− ε(l1)+ ε(l)) (6.4b)

where in (6.4b) l = (r,�), l′ = (r,�′) and l1 = (r1, �1) in polar coordinates. Performing
the l1 = (r1, �1) integration and integrating out theδ(� − �′) which arises, we obtain as
the infinite volume limit

(T1 ∧ T2)

∫
dl

∫
dk |l〉〈l| |f (k)|2 2πδ(ω(k)− ε(l − k)+ ε(l)). (6.5)

We now show that all crossing diagrams in the continuum limit vanish. First we consider the
simplest situation; corresponding to〈AT4AT3A

†
T2
A

†
T1

〉. We have to consider two diagrams;
the non-crossing diagram after the continuum limit (if we include all momenta conservation
constraints) is as given in (figure 8). Note that the Bohr frequencies match between each
pair of emission and absorption vertices; this is required by rule 3.

u u u u
' $

' $

l

l − k1 l − k1 − k2 l − k1

l

k2

k1

Figure 8. Non-crossing component of〈AT4AT3A
†
T2
A

†
T1

〉.

Rule 4 need only be modified to integrate the system particle’s momental over R3

due to the continuum limit. The value associated to this diagram is non-zero and readily
computed.

If on the other hand we examine the crossing diagram (figure 9) we see that the condition
for the Bohr frequencies to match between vertices atT1 andT3 is

ε(l)− ε(l − k1) = ε(l − k2)− ε(l − k1 − k2) (6.6)
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or equivalently

k1 · k2 = 0. (6.7)

u u u u
' $
' $

l

l − k2 l − k1 − k2 l − k1

l

k2

k1

Figure 9. Crossing component of〈AT4AT3A
†
T2
A

†
T1

〉.

However, since (6.7) only holds for a set of zero measure inR3 × R3, we have that
the diagram is in fact vanishing.

The condition for a diagram to be non-zero in the continuum limit is given as an extra
rule.

Rule 5. Whenever we have an emission and re-absorption of a reservoir quantum, the
intermediate sub-diagram cannot have any external lines of other reservoir quanta (figure 10):
this is the only way to satisfy all the momentum conservation requirements at each vertex
and, in addition, the vertex to vertex energy conservation of all pairs of emissions and
absorptions.

Put more simply: the only diagram corresponding to a 2n-point function which survives
the continuum limit is the non-crossing diagram. (If a non-crossing diagram exists for a
given 2n-point function then it is necessarily unique.)

u u ⇒ ≡

non-trivial
Figure 10.

' $

If 〈A]2n
T2n
. . . A

]1
T1

〉 is non-zero then consider the ordered sequence of creator index positions
M = (mn, . . . , m1) such that]mj = †, j = 1, . . . , n, andmh < mh+1, for h = 1, . . . , n− 1.
The possible positions of the annihilators are given byMc = {1, . . . ,2n}/M. We must
have]{m ∈ Mc : m 6 r} 6 max{h : mh 6 r}, for all r = 1, . . . ,2n, otherwise the 2n-point
function vanishes.

There is only one sequence(mn, . . . , m1) equivalent toMc as a set withmh > mh,
h = 1, . . . , n, which satisfies the conditions that whenevermh > mj > mh then
mh > mj > mh and that whenevermh > mj > mh thenmh > mj > mh.

The pair partition{(mh,mh) : h = 1, . . . , n} of {1, . . . ,2n} is called the Wigner or
admissible pair partition for the set{]2n, . . . , ]1}. These pairings give precisely the non-
crossing diagram associated with〈A]2n

T2n
. . . A

]1
T1

〉. It is straightforward to show from the
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diagram rules for the continuum case that

〈A]2n
T2n
. . . A

]1
T1

〉 =
n∏
j=1

min(Tmj , Tmj )
∫

d3l |l〉〈l|
∫

dkm1 . . .

∫
dkmn

∫
dτ1 . . .

×
∫

dτn
n∏
h=1

|f (kmh)|2ei1(lmh ,kmh )τh . (6.8)

Note that the diagrams correspond to operators which are diagonal in the momentum
representation, as expected from the conservation of momentum. In (6.10) we have
introduced the energy violation function1(l,k) for the vertex defined by ¯h1(l,k) =
D+(l,k)

1(l,k) := ω(k)+ ε(l − k)− ε(l) ≡ ω(k)+ h̄

2m
k2 − h̄

m
l · k. (6.9)

Also in (6.8) we have introduced the momentumlmh of the system particle immediately
after the emission vertex atTmh . With kmj denoting the momentum of the reservoir quantum
emitted atTmj and, of course, absorbed atTmj (so kmj = kmj ), and using the convention
that (−1)] = 1 if ] = † and−1, otherwise we have that

lmh ≡ l −
mh−1∑
j=1

(−1)]jkj (6.10)

for the non-crossing diagrams. It is easy to see that (6.12) can be rewritten as

lmh = l −
mh<mr<mh∑

r

kmr . (6.11)

Therefore, we have that

1(lmh,kmh) = ω(kmh)+ h̄

2m
k2
mh

− h̄

m
l · kmh + h̄

m

mh<mr<mh∑
r

kmr · kmh. (6.12)

Substituting (6.12) into (6.8) gives

〈A]2n
T2n
. . . A

]1
T1

〉 =
n∏
j=1

min(Tmj , Tmj )
∫

d3km1 . . .

∫
d3kmn

∫
dτ1 . . .

∫
dτn

×
{ n∏
h=1

|f (kmh)|2ei(ω(kmh )+(h̄/2m)k2
mh
)τh

}
exp

{
i

1

m
p ·

n∑
j=1

j−1∑
r=1

kmr τj

}

× exp

{
i
h̄

m

mh<mr<mh∑
r

kmr · kmh

}
. (6.13)

This agrees with the 2n-point functions calculated by Accardi and Lu [1].
The survival of only non-crossing moments is therefore a universal phenomenon for

interacting noises approximating the action of quantum field reservoirs with responsive
interactions.
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